HDOJ 2050 折线分割平面

原创 陈 浩翔  2016-01-27 03:23  阅读 56 次

Problem Description
我们看到过很多直线分割平面的题目,今天的这个题目稍微有些变化,我们要求的是n条折线分割平面的最大数目。比如,一条折线可以将平面分成两部分,两条折线最多可以将平面分成7部分,具体如下所示。

Input
输入数据的第一行是一个整数C,表示测试实例的个数,然后是C 行数据,每行包含一个整数n(0 < n < = 10000),表示折线的数量。

Output
对于每个测试实例,请输出平面的最大分割数,每个实例的输出占一行。

Sample Input
2
1
2

Sample Output
2
7

分析:
折线分平面(hdu2050)

解析:根据直线分平面可知,由交点决定了射线和线段的条数,进而决定了新增的区域数。
当n-1条折线时,区域数为f(n-1)。为了使增加的区域最多,
则折线的两边的线段要和n-1条折线的边,即2(n-1)条线段相交。
那么新增的线段数为4
(n-1),射线数为2。
但要注意的是,折线本身相邻的两线段只能增加一个区域。
故:f(n)=f(n-1)+4(n-1)+1
f(n-1)=f(n-2) + 4
(n-2)+1
……
f(2)=f(1) + 4*1 + 1
因为,f(1)=2
所以,f(n)=2n^2-n+1

import java.util.Scanner;

public class Main{
    static long[] sLine = new long[10001];
    public static void main(String[] args) {
        Scanner sc = new Scanner(System.in);

        SLSP();

        int n = sc.nextInt();
        while(n-->0){
            int m = sc.nextInt();

            System.out.println(sLine[m]);
        }


    }

    private static void SLSP() {
        sLine[0]=1;
        sLine[1]=2;
        sLine[2]=7;
        for(int i=3;i<sLine.length;i++){
            sLine[i] = sLine[i-1]+4*(i-1)+1;
        }
    }

}

anyShare分享到:
本文地址:http://chenhaoxiang.cn/2016/01/27/0323/
关注我们:请关注一下我们的微信公众号:扫描二维码会Java的公众号,公众号:程序编程之旅
版权声明:本文为原创文章,版权归 陈 浩翔 所有,欢迎分享本文,转载请保留出处!

发表评论


表情